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Differentiable generalized synchronization of chaos

Brian R. Hunt* Edward Ott' and James A. Yorke
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We consider simple Lyapunov-exponent-based conditions under which the response of a system to a chaotic
drive is asmoothfunction of the drive state. We call thidifferentiable generalized synchronizatiéRGS5).
When DGS does not hold, we quantify the degree of nondifferentiability using tldeHexponent. We also
discuss the consequences of DGS and give an illustrative numerical exa8163-651X97)02704-9

PACS numbd(s): 05.45+b

[. INTRODUCTION stable if there is a region of spaceB such that, for any two
initial y vectors y§" y@eB, we have lim_.[ly(t.xo.ys)

Recently, the concept afeneralized synchronizatidmas — —Y(t,xo,y$)|=0, andy(t,x,,y") andy(t,x,.y*?) are in the
been introducedl] to characterize the dynamics of a re- interior of B for t sufficiently large. In the remainder of this
sponse system that is driven by the output of a chaotic drivpaper we assume the response system is asymptotically
ing system. Generalized synchronizati@S) is said to oc-  stable.
cur if, ignoring transients, the response is uniquely There are various situations motivating consideration of
determined by the current drive state That is,y=¢(x), GS. The most natural such situation occurs in the one-way
where ¢ is a function ofx for x on the chaotic attractor of synchronization of two oscillators. An important special case
the drive systentthe attractor is assumed to be bounddfl  of the dynamicq1b) is that of linear coupling,
GS applies, thex dynamics can typically be topologically _
reconstructed from thg dynamics.(Depending on the di- g(y,h(x))=f(y)+C-(x—y), 2)
mension of the vectoy and on the fractal dimension of the

attractor inx, reconstruction may require formation of a de- petween two nearly identical oscillatory systems, wherie

lay coordinate vector frony [2].) _ a coupling matrix, and andf are close. In cases where the
In the case of continuous tim@ows) we can write the  dynamics is chaotic an@ is properly chosen, exact stable
combined drive-response system as synchronism,y(t) =x(t), occursprovided f=f (see[1,3,4]
and references therginExperimentally, one cannot expect
dx/dt=F(x), (12 ainExperi y xP

exact equality of andf, and hence one cannot expect exact
synchronism. Even so, GS might apply, with essentially the
dy/dt=g(y.h(x)). (1b) sgme useful practical consequgencezpa)g exact synchror¥ism.
where xeRX, ye R and f:R*-RX, h:R*SR™ and g:RI Another situation occurs when we cannot observe the sys-
tem statex directly, and Eq(1b) models the response of the
measurement apparatus to the system state. Still another ex-
ample is where the respongés a linearly filtered version of

XR™-R' are continuously differentiable functions. In the
case of a discrete time drive-response system, we write

Xes1=F(X), (1a)  theinput(e.g., se¢5]). More generally, we can expand this
viewpoint to regard Eq(lb) as a nonlinear filter.
Yes1= Gy, H(X)), (1b) While knowledge of the existence of a relation of the

form y=¢(x) is useful, it is often important to also consider
where we assume is invertible, G(y,H) is invertible iny, the continuity and smoothness of the functign For ex-
andF, G, andH are continuously differentiable. ample, it is known in the context of filterinfp] that the
Kocarev and Parlit43] formulated a condition for the relationship between the filtered signal and the system state,
occurrence of GS for the systeft), which, after a slight although expressiblgg] in the formy=¢(x), can be such
reformulation, can be stated as follows: G&urs if, for all  that the attractor reconstructed froommay have a larger
initial xq in a neighborhood of the chaotic attractor of the information dimension than the original attractorxrspace.
drive system, the response system is asymptotically stabl€hat is, the function¢p may be “wild” enough that it
Recall that the response system is said to be asymptoticallshanges the attractor’s information dimension. If we are in-
terested, for example, in deducing the attractor dimension of
the drive system from observations of the respondhis is
*Also at Institute for Physical Science and Technology, Univer-undesirable. One can also cite other examples where suffi-
sity of Maryland, College Park, MD 20742. ciently smoothe is desirablgle.g., obtaining eigenvalues of
TAlso at Departments of Electrical Engineering and of Physics,unstable periodic orbits or Lyapunov exponents of the drive
Institute for Plasma Research, and Institute for Systems Researctystem from observations of the responSéus we wish to

University of Maryland, College Park, MD 20742. consider a stronger version of GS that we derdiféeren-
*Also at Department of Mathematics, University of Maryland, tiable generalized synchronizatid®G9). By this we simply
College Park, MD 20742. mean that there is GS and the functigfx) is continuously
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differentiable forx on the chaotic attractor of the drive sys- history exponents will be those of the periodic orbit, which
tem. In addition, if DGS does not hold, we wish to quantify in general are different from those of typical orbits on the

the degree of nondifferentiability using the'lder exponent.

attractor.

Remark.Note that the attractor of the drive system may To begin our quantitative discussion, we first consider the
be smooth in some directions and fractal in others, and thatase of a map where the drive system attractor has a set of

we are primarily interested in the functieh(x) evaluated for

past-history Lyapunov exponents that at each pwiaoh the

x on the attractor of the drive system. In this context weattractor consists ok—1 positive exponents and one nega-
define differentiability of¢ as follows. If there exists a ma- tive exponent, denoted byhg(x). In this case we expect the

trix V, ¢, such that for smalb with x+é on the attractor,
d(x+8) = p(x) + 8-V p+o(|4l]),

then we sawp is differentiable at the point on the attractor.

attractor structure at each poixtto be smooth in thé&—1
expanding directions and to be fractal in the contracting di-
rection corresponding to the Lyapunov exponefiy(x).
This situation applies for many examples encountered in
practice (e.g., for chaotic attractors of invertible two-

Note that this defines differentiability requiring the evalua-dimensional maps such as thértée map, the Ikeda map,
tion of ¢ only at points on the drive attractor and that the €tc); the considerations also translate readily to flows with
definition includes directions cutting across the fractal strucon€ negative Lyapunov exponent. Leth,(x) denote the

ture of the attractor.

Il. HO LDER EXPONENT AND DGS

Assuming GS applies, we first consider thelds expo-
nent y(x) of the function ¢(x) evaluated at the poirix,y),
wherex is on the drive attractor ang= ¢(x). For pointsx
andx+ & on the drive attractor, we define the lder expo-
nent y(x) of ¢(x) atx as

y(X)=(|$iTinf{|09H¢(X+ o)~ d(x)|/logdl}, (3
0

if the right-hand side is less than one, amk)=1 if the
right-hand side is greater than one.

It can be easily shown thai(x)>0 implies thate is con-
tinuous atx, and thate is not differentiable ak for y(x)<1.
If ¢(x) is differentiable ak, theny(x)=1. If ¢(x) is discon-
tinuous atx, then y(x)=0. On the other handy(x)=1 does
not necessarily imply thatp(x) is differentiable atx, nor
does y(x)=0 necessarily imply thagh(x) is discontinuous
at x.

We proceed to determingXx) in terms of the dynamics of
the drive and response systems. At each poion the drive
attractor, and at each corresponding pojrt ¢(x) of the

least-negative response-system past-history Lyapunov expo-
nent corresponding to the poilit,y=¢(x)) (recall that we
assume the response to be asymptotically stable, implying
that all response exponents are nonpositive; we consider the
case where the Lyapunov exponents of the response system
are negative

Our principal results for the case where the drive has only
one negative exponent are the following. Their application to
the general case, in which there may be more than one nega-
tive exponent, is discussed later.

(i) The Hdder exponent of the functiog(x) at a pointx
on the drive attractor is one If,(x)=h4(x). For typical sys-
tems, ifh,(x)<h4(x) the Hdder exponent is

¥(X)=h(x)/hg(X). 4

We discuss the meaning of the phrase “typical system” sub-
sequently.[Including the atypical cases, we have that, in
general, ifh,(x)<h4(x), then y(x)=h, (x)/h4(x).]

(i) The function ¢(x) is differentiable for allx on the
drive attractor(i.e., DGS applie if

h,(x)>hy(X) 5

for all x on the drive attractor.
Recall that the existence of a’lder exponent;y(x)>0,

response, we imagine that we evaluate the past-historglaimed in(i), means tha# is continuous for pointg on the

Lyapunov exponents. That is, for tinfe>0 we look at ther

drive-system attractor. In some cases, results in the literature

preimage ofx, evaluate the finite-time Lyapunov exponents[7] on the existence of invariant manifolds and their persis-

over the orbit segment traveling from tiepreimage o to
X, and then lefT—~. For almost every point with respect
to the attractor’s natural measure, ts@meset of humbers

tence under perturbation yield conclusions similar(boit
generally weaker thar(i) and (ii).
We now give a heuristic argument f¢r) and (ii). For

for the past-history Lyapunov exponents will be found, andsimplicity, consider the case whexds a point on a periog
these are also the same as the forward Lyapunov exponenisstable periodic orbit embedded in the drive attractor. Let

atx. (We call such pointsypical.) However, usually there is
also a dense set of pointson the attractor for which the

oy denote an initial displacement from the poit where
x+é&, is on the drive attractor. Using E¢la or Eq. (1d)

past-history Lyapunov exponents are different from those ofake the displaced point forward in time by the amouant
typical points. The set of all these atypical points has zerad—4,, wheren=mp andm is an integer. Similarly, take
natural measure, but these points are nevertheless significahe pointy+ dy,=¢(x+ &) forward the same tima using

in our considerations. Thus, in general, we must regard th&q. (1b) or Eq.(1b"), y,— dy,. According to the Hartman-

past-history Lyapunov exponents aslependent. The sim-

Grobman theorem, there exists a change of variables that

plest example illustratinge dependence of the past-history makes the dynamics linear in a finite region about the peri-

Lyapunov exponents is the case wherées precisely on the

odic orbit(assuming generic eigenvalye$hus it suffices to

unstable manifold of an unstable periodic orbit in the chaoticconsider the dynamics as linear. Assu@gto be chosen to

attractor of the drive system. In that case,Tas«, the T

lie in the eigendirection of the linearized drive system corre-

preimage ofx approaches the periodic orbit. Thus the past-sponding to the eigenvalue vyielding the contractive
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x-Lyapunov exponent;-hy(x). We wish to examine the be- Which of these two behaviors dominates at langis deter-
havior of dyy,=d(x+ ) — @d(x) as it is iterated forward in mined by whethehy>h, or hy<h,. We have after a large
time. To do this we write the linearized drive-response syshumber of iterates
tem asz,, =2z, where
exd —h,(x)n], if h,(x)<hg(x)

Yo Y™ | ey — hd(x)n], if 1, (x)=hy(x)

' (133

X O
W Y|

X

=
y

(6) — oy~ exp —hy(x)n], (13b)

where 8y,=p(x+8,)— @d(x). For h,(x)<h4(x), we have
Herex is ak vector,y is anl vector,zis a (k+1) vector,O from Eq.(13),
is thel Xk zero matrix, and the matrices, Y, andW have
dimensionk Xk, I X1, andk X1, respectively. Genericallys | p(x+ 8,) — d(X)||~ | 8|7, (14)
andY have distinct eigenvalues,

7=

_ _ where y(x) is given by Eq.(4). Thus, sinced,—0 asn—»,
Xexp=Axpbxp,  P=1.2....K, @) Eq. (14) yields Eq.(4). Similarly, for the cagehr(x)zhd(x),
Ye. =\ —12,..] ®) Egs.(13) again yield Eq.(14), but with y(x)=1. This argu-
ya~ MyaSq AT L4 0 ment applies fok being a periodic point. Another argument,
not given here, shows that the same result applies to the case
wherex is any nonperiodic point on the attract@n the case
of a periodic orbit the past-history and forward Lyapunov

The matrixZ has eigenvalues,, A\, with corresponding
(k+1)-dimensional eigenvectoes,, ande,,

Z€,00= M poxps  P=1,... K, (9)  exponents are the same. Wheis nonperiodic they are not
. prexp necessarily the same, and it is the past-history exponents that
Ze, =\ . gq=1,..). (10  are relevanj.
2y~ tyaSeye: In order to demonstrate(ii), we note that when
The eigenvectors are h (X)>hgy(x), taking dy= &€, for anyp=1,2,...k, the lin-
ear dynamicg7) always results in
e 2
Xp é
D 82, =1, - p , (15)
o &
equ: ) (ll) . e . .
€q for sufficiently largen. Thus, since the,, generically span

- 1 ] . . the x space, we have that the derivativesdfx) exist and
where €,=(\p1—Y) "Wey,,, O is the k-dimensional zero  gre given by

vector, thel X1 unit matrix is denoted., and the indicated
inverse exists assuming the generic conditigp# A for ) =8 =12 16
all p andg. Our original question of what happensdg, as =8, P k. (16
it is iterated can be addressed by considering the entire sy:

tem with initial displacement fln the case of complex

nary parts of(16).]

In the above discussion obtainig it was assumed that
the drive-response system was typical in that the chosen
direction for &, (namely,d,= &e,q) Yields dy,, which results
in a nonzero component afy,— &€y along the response-
gystem eigendirection corresponding to the exporen(x).

As an example where this is not the case, consider the
situation where the response system is_of the f¢2nand
the drive and response are exactly matclied, In this case
1 sy 50%}, (120  we can have exact synchronisgx [i.e., ¢p(x)=x]. Thus,
even though Eq(5) may be violated, the surface= ¢(x)

we see that the first vector on the right-hand side of@a) IS Still smooth(itis the hyperplan&=y). However, a generic
evolves with time ag\,4"=exp(—nhy). Typically we ex-  perturbation of the functionf away fromf restores the
pect thatdy,— 6,64 has no special relationship to the eigen- validity of Eq. (4). On the other hand, we note that, if this
directions ofY. In this case all of the eigendirections ¥f perturbation is small, the resulting componentdgf along

will be “excited.” For large timen the response eigenvalue the response-system eigendirection corresponding to the
of largest magnitude will dominate|\,,|"=exp(—nh;).  exponent—h,(x) is expected to be smalit is zero when
Thus, for largen, 8y, consists of two components: one ex- the perturbatlon is zejo Thus in this case we might,
cited by the first vector on the right-hand side of Ef2)  for example, expect aé dependence of the form
decaying as exp-nhy), and one excited by the second vec- || p(x+ 8) — ¢(x)| =K] 8"™ to apply with a relatively small

tor on the right-hand side of E¢L2) decaying as exp-nh,).  value ofK. A small enough value df would have the effect

xp» We can take the real and imagi-

520 =

4
Yo’
where the initialx displacement i$5= &e.q ande,q is thex

eigenvector corresponding to the contractive eigendirectlo
with eigenvalue\,qy, |\,q =exp(—hy). Writing &z, as

520= 50| & al
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that, in the presence of limited precision measurement and/or Ay A @

small noise, the consequences of nondifferentiability may be

unobservable. 1 1
Note that having only one negative drive exponent im-

plies fractal structure of the drive attractor in the eigendirec-

tion corresponding to-hy(x). Thus our stipulation that we o

can pick a smallg, aligned along the contracting direction

such thatx+ &y is a point on the attractor can be satisfied. In

the case where there are several contracting directions for the

response system, the attractor may be “empty” in some of

the contracting direction§.e., for some of the contracting

directions, there may be no sma aligned along that con-

T

P
xM xM
1 Ay 1

R

Y

FIG. 1. The generalized baker's map, E¢f?).

tracting direction such that both and x+ &, are on the at- 1 _ Naxi! if X' <a 17
tractop. In that case, by slightly extending our consider- Knea T x @, f xP=q’ (179
ations, our previous discussion can still be applied. To do

this, at each point on the attractor we consider those nega-

tive drive exponents that correspond to eigendirections that —x?, it xP'<a

locally intersect the attractor at more than a single point x§12+)1= 1 (A7b
(“nonempty” eigendirectiony and we take the most nega- —(xP—q), if xP<a

tive of those, which we now denote byhy(x). In terms of
this new designation df4(x), our statement§) and(ii) are _ B .

still expected to apply. The reason for taking the most nega\r%gefnasj;[é _slteagda\:lsvs(?u?ri?j tt%kﬁgz?lt]t; 1];08”(?]9 Fig. 1. The
tive intersecting drive exponent is that the definitiomf), P Y

Eq. (3), specifies a limit inferior ovew, and y(x) from Eq.
(4) is smallest for largehy(x). To see that there may be

contracting directions that are empty in the sense that theg : . . ,
. . . .~ “can be considered as a discrete version of a low-pass filter
intersect the attractor only at a single point, recall that hlghe-[r

. . 10]. The attractor for Eq(17) has a natural measure that is
dimensional systems can often be shown to possess low

dimensional “inertial manifolds”[8] such that there is @ \;jeq thatn,#a. The box-counting dimension of the attrac-
dynamical system for state points in the inertial manifold,;,, s D=2, since typical trajectories are dense in the unit

and this dyne_lmical §ystem_ yield§ all the e.rgodic. invariantsquare by virtue ofh,+\,=1. The past-history Lyapunov
sets of the original higher-dimensional systémparticular,  exponents for the drive system evaluated at a point
its chaotic attractojsIn that case contracting eigendirections x=(x(1) x(?)) are[9]

transverse to the inertial manifold are clearly empty. In the
absence of knowledge as to which of the contracting-drive 1 1
eigenvalues are empty, statemetijsand (ii) are still useful hy(x)=a(x)In WH)(X)'” W>O
in that use of the most contracting-drive Lyapunov exponent

in place ofh4(x) provides a lower bound om(x) [statement

yn+1:)\Yn+X(nl) ) (18)

tuniform in x@ and varies wildly in thex¥ direction pro-

(199

()], and asufficientcondition for DGS[Eq. (5)].

Finally, we remark that the condition for DGS can some-
times be verified in terms of finite-time Lyapunov exponents.
The timeT Lyapunov exponents of a system are defined to
be 1T times the logarithms of the singular values of the
Jacobian matrix of the tim&-map of the system(The sin-
gular values of a matriM are the square roots of the eigen-
values of MM T, whereMT is the transpose ofl.) If, for
someT and for all x on the attractor, the most negative

where

hy(x)=a(x)In N3+ b(x)In A,<0,

- Ny(X)
a(x)= lim o

n—o

b(x) = lim Mo(X).

(19b

(209

(20b)

n—o

time-T Lyapunov exponent of the drive systemxagxceeds

the least-negative tim&-Lyapunov exponent of the response ) ) .
system afx,¢(x)], then we can show that conditig), and 1" Ed. (20), n,(x) [np(x)] is the number of times the first
hence DGS, hold(t may sometimes be possible to verify Preiterates fromx are inx?<a [x?=a]. [Note thata(x)
this finite-time condition for a single iteration in the case of +b(x)=1.] By virtue of the symbolic dynamics for E¢17),

a map or an infinitesimal time step in the case of a flow. there are orbits that visit the region§’<a andx®=a in
any order. Thus any value farx) in [0,1] can be attained by

proper choice ok. On the other hand, i is randomly cho-
sen in the area of the unit squaf@<x*?<1), we have
a(x)=a and b(x)=8 with probability one[i.e., the natural

We now consider a simple example. The drive system isneasure of the regior®<a (x?=a) is a (8)]. Thus the
given by a ?eneralized baker’s mggl, which takes the unit Lyapunov exponents for typical points on the drive attractor
square, &xP<1, 0=<x?<1, to itself, are

Ill. AN EXAMPLE
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FIG. 2.y vs x¥ for Egs.(17) and (18).

_ 1 1 attractor at whicth, <|h,(X)|. In particular, if\,<\,, then
hi=aln—+4In 5 0, (218 by Eq.(19b), we see that, depending om |h,(x)| can attain
any value in the range

hy=a IN\,+ B I\ p<0. (210
IN(1/\ ) =] hy(x)[=In(1/ ). (23

Hence, although the box-counting dimension of the drive
attractor isDy=2, by the Kaplan-Yorke formul§9,11], its

information dimension is between 1 and 2, We now consider the case where

Dy 1+ (hy /(). 22 In(1/\,)>h,>|h,|. (24
In this case there are poimksat which the Héder exponent
Application of the Kaplan-Yorke formula to the combined predicted by Eq(4) is less than one. The natural measure of
drive-response system Eg4.7) and (18) again yields Eq. these points is zero, but they are dense in the attractor. Thus,
(22) provided thath,>|h,| (whereh,=In A1), but yields a  although the information dimension is preserved, the surface
larger value of the dimension if,<|h,|. Figure Za) shows y=¢(x) is still nonsmooth. Figures(B) and Zc) show the
a numerical computation of the surfage- ¢(x) for a case results of numerical computations of the surfgeeg(x) for
satisfying h, =In \"1<|h,| [A,=0.2, A=0.8]. The resulting two cases satisfying Eq24) [\,=0.2,\=0.6 for Fig. 2b),
curve is fractal as indicated by its very wrinkled appearance\,=0.2,A=0.4 for Fig. Zc), and we assume=0.2 in both
(Note that sincep is independent 0k® and e, it suffices to  caseg12]]. The effect of the dense set whepx)<1 clearly
plot y versusx¥ and Fig. 2a) is valid for all 0<a<1) manifests itself in the plot shown in Fig(8 giving the
Now consider the case whette =In \"*>|h,|. In this  surface an extremely wrinkled appearance. The other case
case the filter does not change the Kaplan-Yorke dimensiorsatisfying Eq(24), Fig. 2c) appears less wrinkled sinbg is
i.e., the attractor of the combined drive-response systengloser to Irfl/n,). Finally Fig. Ad) shows a case where
Egs.(17) and(19), still has the information dimension given h,>In(1/\,) (A\,=0.2, A=0.1) in which case the function
by Eqg.(22). On the other hand, even thougp>|h,|, there = y=¢(x) is predicted to be differentiable everywhere. As pre-
is still the possibility that there are points on the drive dicted, the curve in Fig. @) appears to be smooth.
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Note that, as we increase from zero, ¢(x) first loses tractor[13], and the criticah is just this minimum Lyapunov
differentiability as A passes through\,, which is the number.
Lyaf)unov number of the period one unstable periodic orbit
(x) x®)=(0,0. More generally, consider the system
(1d),(1b"), where thek-dimensional drive system is uni-
formly expanding ink-1 directions and is uniformly con- We thank L. M. Pecora for useful discussions and for
tracting in one direction, and the response system is a linegroviding us with a preprint of his paper with T. L. Carroll
filter of the formy, ,;=Ay,+AX,, whereA andA are ma- [5]. This research was supported by the Office of Naval Re-
trices. LetA<1 denote the magnitude of the largest eigen-search, by the U.S. Department of Energylathematical,
value of A. Now say that the parameters of the filter arelnformation, and Computational Sciences Division, High
varied. We conjecture that the bifurcation at whigfx) first ~ Performance Computing and Communications Program
becomes nondifferentiable typically occurs msincreases and by the National Science Foundati@ivisions of Math-
through a critical value that is determined by a special low-ematical and Physical Scienge§he numerical computa-
period periodic orbit which has the smallest “contracting” tions reported in this paper were made possible by a grant
Lyapunov number among all the periodic orbits on the atfrom the W. M. Keck Foundation.
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